
Sampling and Analysis of Perfluoroalkyl Substances in Air Using TD–GC–MS

A company of the SCHAUENBURG International Group

What are PFAS compounds?

- Per- and polyfluoroalkyl substances (PFAS) are a group of man-made chemicals that includes PFOA, PFOS, GenX, and many other chemicals.
- PFAS have been manufactured and used since the 1940s.
- PFOA and PFOS have been the most extensively produced and studied of these chemicals. Both chemicals are very persistent in the environment and in the human body.

Exposure risks of PFAS

- There is evidence that exposure to PFAS can lead to adverse human health effects, such as:
 - low infant birth weights
 - effects on the immune system
 - cancer (for PFOA), and thyroid hormone disruption (for PFOS).
- PFAS are present in firefighting foams so high levels are found near military sites, where they have been used for firefighting drills
- This is one pathway for PFAS to enter the drinking water supply

Source: US EPA (https://www.epa.gov/pfas)

How are PFAS currently measured?

- For drinking water the US EPA have method EPA 537.1
 - Determination of Selected Perfluorinated Alkyl Acids (PFAA) in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS)
 - Only targets 18 PFAS compounds
- ASTM 7979 and 7968 also exist for sludge and soil sampling
- For other matrixes/wider target list labs will use their own 537 'modified' method – no universal standard
- All based on aqueous samples (water/sludge) or food tissue (fish) with LC-MS–MS analysis

Where does thermal desorption fit in?

- Markes Inc. is working with a local lab contracted with Jacobs (government contactor) to develop sampling and analytical methods for volatile PFAS
- Limited previous work;
 - 2008 paper on fluorotelomer alcohols (FTOHs) identified in Japan using a newly developed passive air sampler containing activated carbon felts.
 - 8:2 FTOH ranged from <32 to 2466 pg m⁻³ and was ubiquitous in the environment in Japan.
- EPA study on FTOHs in 54 consumer products
 - The content of 6:2 FTOH ranged from n/d to 331 μ g g⁻¹, 8:2 FTOH from n/d to 92 μ g g⁻¹, and 10:2 FTOH from n/d to 24 μ g g⁻¹.
 - In addition, two consumer products from the home textile category were tested in the washing-drying process in the micro-scale chamber under elevated temperatures.
 - The experimental data show that the washing-drying process with one cycle did not significantly reduce the FTOH concentrations in the tested consumer products.
 - Future tests should include air sampling to allow determination of the absolute emission rates at different temperatures.

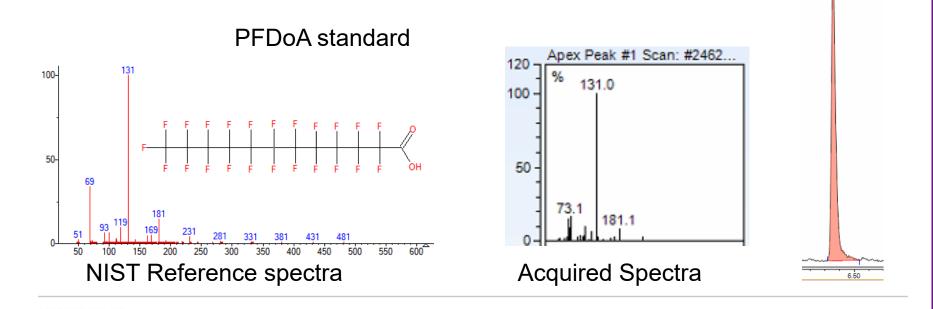
Project Team

Julia Roth Tiffany Hill James Hatton Chris Lutes Bill Diguiseppi Chase Holton, PhD (now at Geosyntec)

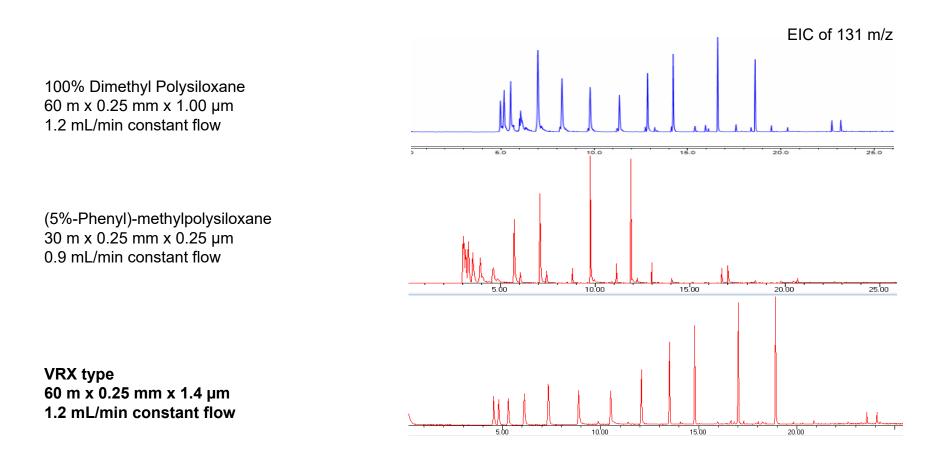
David Wevill, PhD, MRSC Wade Bontempo Nicola Watson, PhD

Chris Heron Martha Maier

University of Nevada, Reno


David Hanigan, PhD Utsav Thapa, PhD

Thermal desorption method development


- Local lab, Vista, provided individual standards for 34 PFAS compounds (50 ng/µL in methanol) used in their current LC–MS/MS method
- 1 uL of each was loaded in turn to stainless steel Markes 'Universal' sorbent tubes
- 22/34 compounds gave a discernable peak
 - Acids, alcohols and sulfonamides did work
 - Sulfonic acids and sulfonates didn't work

/ARKES

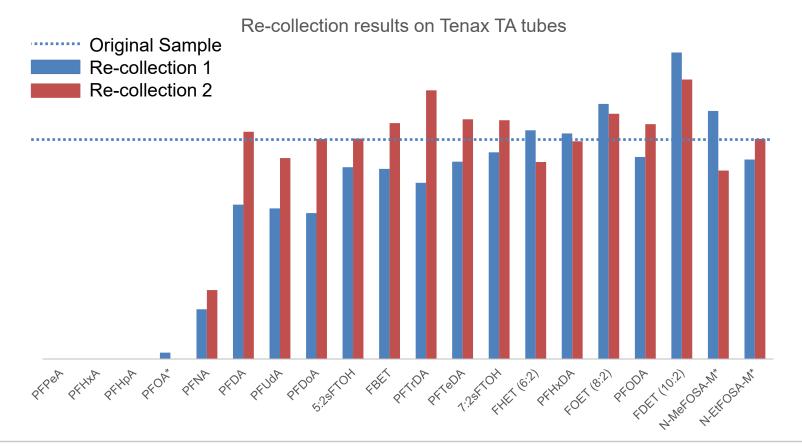
GC separation

- 22 compounds were mixed together to create a \sim 2.2 ng/µL mixed standard.
- This mix was used to refine the GC column and method.
- The 'VRX' 60 m x 0.25 mm x 1.4 μm column was found to give the best separation

MARKES international

Re-collection and re-analysis of sample by TD-GC-MS

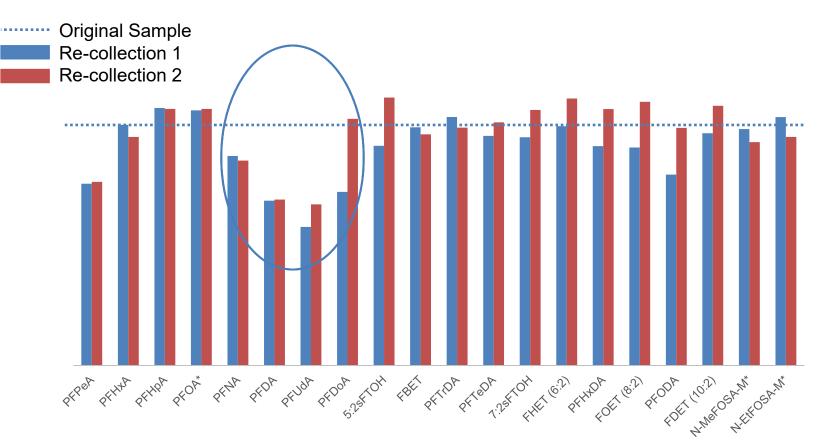
How it works


 Focusing trap heated rapidly ⇒ analytes desorb and are injected to GC.

Collection tube

• Optional outlet split.

Re-collection (recovery) tests


- Re-collection experiments were run using Markes' Universal and Tenax TA stainless steel tubes.
 - 5 lightest acid compounds were lost (due to breakthrough) on Tenax TA tube.

Re-collection (recovery) tests

- No breakthrough seen on Markes Universal stainless-steel sorbent tube.
- Consistent drop in recovery for PFNA, PFDA and PFUdA indicated in circle

Re-collection results on Markes 'Universal' tubes

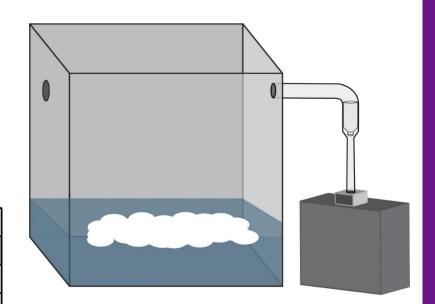
Calibration and Repeatability

- Calibration and repeatability tests were carried out using stainless steel 'universal' tubes
 - Calibration relative response factor (RRF) % RSD averaged 23.0% (ok)
 - Repeatability (1 uL injection) in full scan mode averaged 13.2% n=3 (ok)

Breakthrough

- Basic breakthrough tests performed by loading standard to a Universal tube then sampling an additional volume, 400 cc and 800 cc of lab air
 - Recovery was > 90% at both volumes for all sulfonamides and acids except PFDoA (83% and 72% for 400 cc and 800 cc respectively)
 - Carryover test of the tube showed > 5% carryover for PFDoA, suggesting low recovery was due to incomplete desorption from the tube
- Based on these preliminary tests, 400 cc sample volume is suggested
- Method optimization would require improvements of desorption efficiency to increase overall recovery.

AFFF volatility box experiment



A company of the SCHAUENBURG International Group

Experimental setup

Experimental Parameters							
Trial 1 Trial 2							
Flow Rate (cc/min)	low Rate (cc/min) 200						
	50% AFFF, ~2.5% active						
Dilution	ingredient						
AFFF Expansion Ratio	15:1						
Sample Duration (hours)	rs) 24 0.083						

Sample Breakdown per Event							
Sample Type XAD/PUF Samples TD Samples							
Equipment blanks	1	1					
Samples	2	2					
Duplicates	1	1					

Materials Used					
Volatility Box	HDPE				
AFFF	Fluorotelemorized derived foam currently available for purchase				
Tubing	HDPE before sample, Tygon tubing after sample				
Pump	SKC PCXR8				

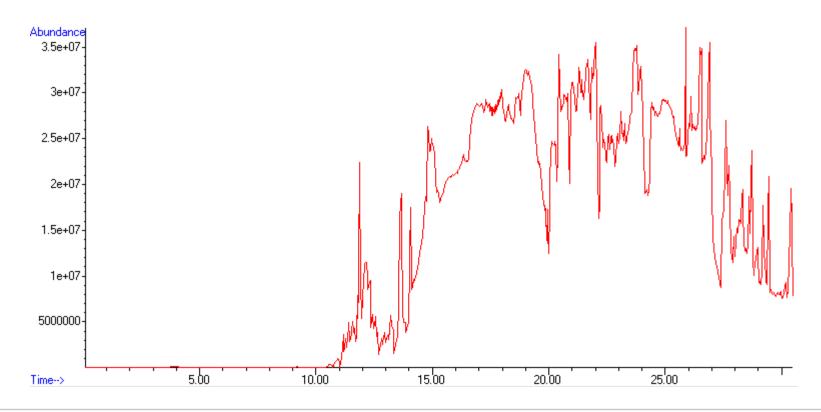
Analytical method: LC–MS–MS (MRM)

- Analyzed via QSM v.5.1 Table B-15 method
- XAD/PUF cartridges extracted for 30 PFAS
 - Reporting limit of **<u>2 ng/sample (or ppt)</u>**

PFBA	PFHpA	PFOSA	EtFOSAA	PFTeDA
PFPeA	PFHxS	PFOS	PFUnA	EtFOSA
PFBS	6:2 FTS	PFDA	PFDS	PFHxDA
4:2 FTS	PFOA	8:2 FTS	PFDoA	PFODA
PFHxA	PFHpS	PFNS	MeFOSA	MeFOSE
PFPeS	PFNA	MeFOSAA	PFTrDA	EtFOSE

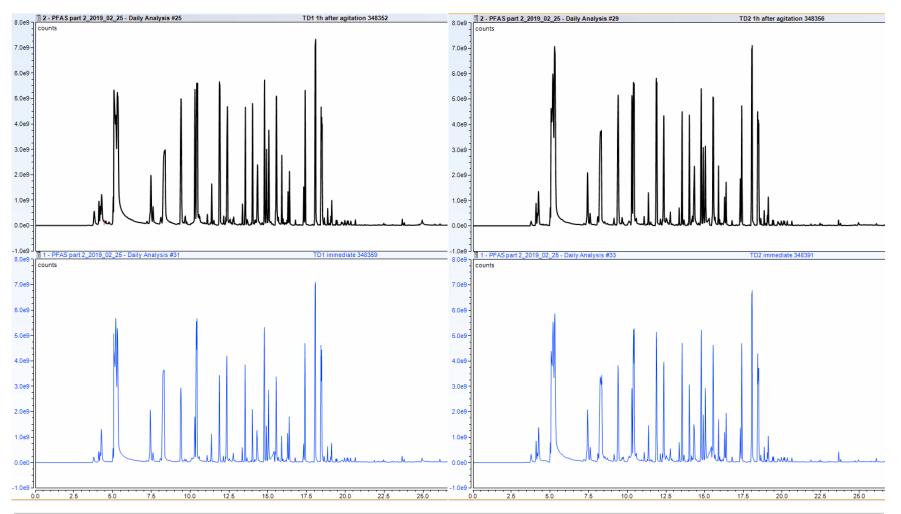
Analytical LC–MS–MS (MRM) results

Compound	CAS No.	Equipment Blank (ng/L)	Sample 1 (ng/L)	Sample 2 (ng/L)	Sample 3 (ng/L)
PFBA	375-22-4	3.45	5.43	3.98	4.27
PFHxA	307-24-4	ND	41.7	33	32.1
6:2 FTS	27619-97-2	ND	66.7	77.5	47.3


Key Takeways:

- PFHxA and 6:2 FTS were present in AFFF emissions, but not at levels that would be of concern for vapor intrusion
- PFHxA and 6:2 FTS are intermediates in the degradation pathway
- PFBA may have been detected due to background

Sampling experiment results


- Sampling experiment performed using direct emissions from AFFF
- TD tube was sampled at 200 mL/min for 24 hours = 288 L of air sampled
- This exceeded by far the breakthrough volume for the PFAS compounds and overloaded the GC column and MS detector on the first run

Sampling experiment repeat

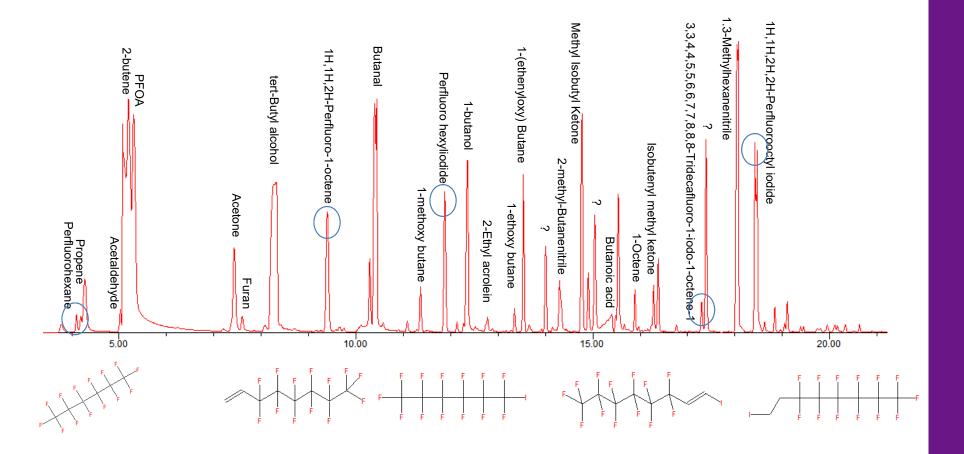
- Sampling for 2 minutes at 200 cc/min
- Two repeats immediately after agitation of the AFFF mixture (black) and 1 hour afterwards (blue)

Target analysis results – PUF/XAD-2 comparison

Values are ppt

PUF/XAD-2 samples run by LC-MS-MS at Vista Analytical labs, CA

Compound	TD tube blank	TD1 immediate	TD1 1h after agitation	TD2 immediate	TD2 1h after agitation
PFPeA	n/d	0.98	4.00	2.05	2.05
PFHxA	n/d	88.46	178.73	165.63	188.18
PFHpA	0.07	2.66	16.65	6.33	8.35
PFOA	1.69	6859*	11873	9383*	15468
PFNA	0.05	0.46	n/d	1.73	0.10
PFDA	0.10	17.38	55.53	36.69	61.50
PFUdA	0.54	n/d	n/d	n/d	n/d
PFDoA	n/d	0.59	1.65	1.68	2.05
PFTrDA	n/d	0.42	n/d	0.28	0.53
5:2sFTOH	n/d	0.50	n/d	n/d	1.13
FBET	4.79	28.76	45.28	43.75	40.58
PFTeDA	n/d	1.78	5.25	3.81	10.10
7:2sFTOH	0.06	4.08	9.73	7.52	10.83
FHET (FTOH 6:2)	0.04	33.96	35.90	33.08	34.23
PFHxDA	0.02	0.56	1.08	1.05	1.23
FOET (FTOH 8:2)	n/d	n/d	n/d	n/d	n/d
PFODA	n/d	n/d	n/d	n/d	n/d
FDET (FTOH 10:2)	1.35	9.24	10.65	12.28	11.70
N-MeFOSA-M	0.92	0.19	0.20	0.14	0.20
N-EtFOSA-M	2.85	0.18	0.15	0.11	0.13
N-MeFOSE-M	0.35	n/d	n/d	n/d	n/d


* These values greatly exceed the calibration range of the system.

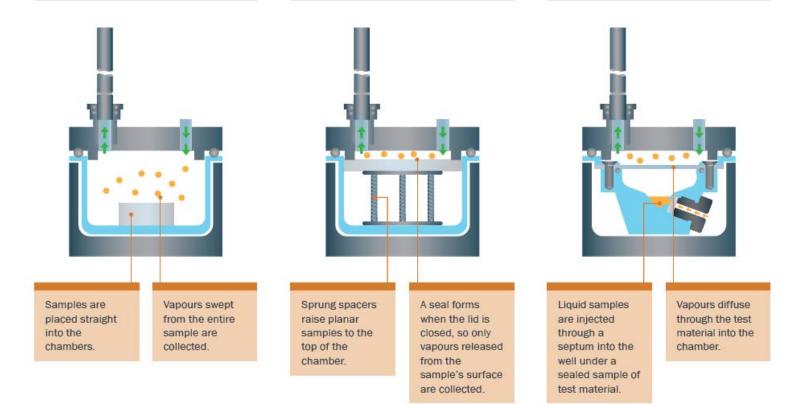
Compound	PUF/XAD blank	PUF/XAD sample 1	PUF/XAD sample 2
FTS 6:2	n/d	1.28	2.69

Untargeted analysis

Immediately after agitation

MARKES

Micro-Chamber/Thermal Extractor


- Compact, stand-alone unit for rapid sampling of chemicals and odours released from a wide variety of products, foods and materials.
- Dynamic headspace approach, samples of VOCs and SVOCs onto sorbent tubes
- Simulates real-world ageing / formulation processes
- Ideal solution for
 - Industry R&D, Formulation & QC screening
 - Test Labs Certification, screening
 - Government labs Certification and R&D
 - Universities R&D
- Compatible with multiple sample types:
 - Sorbent tubes (industry standard and other)
 - DNPH,
 - online systems & continuous monitors

Fast, Simple, Cost-effective, Robust, Reliable, Sensitive, Versatile, Compliant

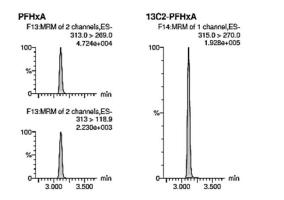
Sampling approaches

Bulk emissions testing is valuable for profiling odours and emissions, and for testing of raw materials and foods. Surface emissions testing: This approach is suitable for determining area-specific emission rates from flat samples. **Permeation testing:** A permeation accessory allows measurement of volatiles permeating through a thin layer of material.

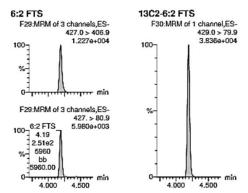
Microchamber testing

Direct collection from source material ng/L

ID	RT (min)	Tube blank	Chamber blank	AFFF 26°C	AFFF 40°C	Tube blank after desorption
PFPeA	4.32	n/d	n/d	6.04	n/d	n/d
PFHxA	4.56	n/d	n/d	10.00	n/d	n/d
PFHpA	5.02	n/d	n/d	6.44	n/d	n/d
PFOA	5.83	n/d	n/d	544	28.4	n/d
PFNA	6.91	n/d	n/d	3.03	n/d	n/d
PFDA	8.52	n/d	n/d	8.68	0.59	n/d
PFUdA	10.17	n/d	n/d	n/d	n/d	n/d
PFDoA	11.76	n/d	n/d	0.97	n/d	n/d
5:2sFTOH	13.84	n/d	n/d	n/d	n/d	n/d
FBET	13.96	n/d	n/d	n/d	n/d	n/d
PFTrDA	13.21	n/d	n/d	n/d	n/d	n/d
PFTeDA	14.49	n/d	n/d	n/d	n/d	n/d
7:2sFTOH	15.74	n/d	n/d	n/d	n/d	n/d
FHET (6:2)	16.54	n/d	n/d	43.2	20.6	n/d
PFHxDA	16.73	n/d	n/d	n/d	n/d	n/d
FOET (8:2)	17.77	n/d	n/d	n/d	n/d	n/d
PFODA	18.63	n/d	n/d	n/d	n/d	n/d
FDET (10:2)	18.7	n/d	n/d	217	22	n/d –



Analytical LC–MS–MS (MRM) results AFFF analysis


The AFFF used in the volatility box experiment was analyzed via LC/MS/MS at a 1:1000 dilution. At that dilution only PFHxA and 6:2 FTS were present above the DL of 250 ppt. These results correspond with what was seen in the XAD/PUF.

Compound	CAS	Concentration (ppt)
PFHxA	307-24-4	1327
6:2 FTS	27619-97-2	1512

PFHxA

6:2 FTS

Conclusions and future work

- The AFFF Volatility Box Experiments are the first step in understanding PFAS vapor intrusion
- AFFF feedstock impurities detected with TD–GC–MS would likely volatilize readily after release
- Two sampling and analytical methods have been tested:
 - XAD/PUF Sampling with LC-MS-MS (MRM) has been tested for 30 PFAS
 - TD Sampling with TD-GC-MS has been tested for 22 of the PFAS Standards
- Further studies to mimic real life conditions/events
- Refine sampling and analysis procedures
- Study with different starting materials

Any questions?

Contact Markes

- \bowtie
- enquiries@markes.com
- ~
- +1-866-483-5684

www.markes.com

@MarkesInt

www.linkedin.com/company/markes-international

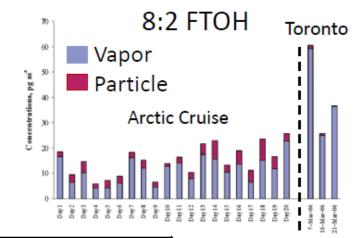
PFAS Volatility

A company of the **SCHAUENBURG** International Group

Theoretical Henry's Law Constants and Vapor pressures

Substance	Aqueous Solubility (g/L)	P _{vapor} (PA)	Henry's Law Constant (atm m ³ mol ⁻¹)	
PFOS (K ⁺)	5.19 E-1	3.31 E-4	3.4 E-9	
PFOA (H+)	9.5	7.0 E1	4.6 E-6	
PFOA (NH4+)	>5.00 E2	<1.3 E-3/9.2 E-3	<1.1 E-11/7.8 E-11	
N-EtFOSE	1.51 E-4	5.4 E-1	1.9 E-2	
N-EtFOSEA	8.9 E-4	N.A.		
6:2 FTOH	1.2-1.7 E-2	N.A.	1 E -2	
8:2 FTOH	1.40 E-4	2.93	9.6 E-2	

Meets USEPA's 2015 volatility criteria: 1) Henry's Law Constant > 10⁻⁵ atm*m³/mol


Source: Hekster et al (2002)

Particle - Gas partitioning

Key Takeaway:

 <u>ALL</u> PFAS precursors analysed were vapor phase dominant

		6:2 FTOH	8:2 FTOH	10:2 FTOH	MeFOSE	EtFOSE	
Arctic Gas Phase Air Concentration	m3)	2.65	11.4	6.57	8.3	1.87	
Arctic Particle Phase Air Concentration	eans (pg/i	BDL	3.5	0.8	3.53	1.05	
Toronto Gas Phase Air Concentration	etic M	17.7	40.2	21.2	8	2.33	
Toronto Particle Phase Air Concentration	Arithm	0.31	0.71	1.09	4.2	0.96	
Arctic Particle Phase	Percentage	BDL	23%	15%	32%	22%	
Toronto Particle Phase	Percei	BDL	2% ± 1%	5% ± 3%	30% ± 16%	30% ± 16%	
Notes: 1) BDL = Below Detection Levels 2)MeFOSEA was analyzed for, but below detection levels							
Source: Shoeib et al (2006)							

